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STATISTICS OF ONE-DIMENS IONAL CLUSTER MOT ION*

I John 0. Wrigley , David A. Reed , and Gert Ehrlich

Coordinated Science Laboratory,t Department of Metallurgy, and

Department of Physics, University of Illinois at

Urbana-Champaign , Illinois 61801

I
The statistics of clusters, made up of metal atoms in

I adjacent one-dimensional diffusion channels, are developed

quantitatively. Kolmogorov ’s equation is used to find the
L f

mean square displacement for clusters capable of existing in

energetically different configurations at the same displace-

ment of the center of mass; this is done under steady state

1 conditions, for which the probability of finding a specified

p configuration does not vary in time . Two systems are examined :

(1) Dimers capable of existing in an infinite number of states,

(1 a situation realized ii dissociation is allowed , and (2) Trimers

diffusing on planes, such as W(2l 1), on which nine distinct jump
~1t i

processes may contribute to the cluster motion. In dimer diffusion,

I it is demonstra ted that dissocia tion may be impor tant even if

the fraction dissociated is minor. For trimers, previous

attempts to approximate the motion through the use of average

transition ra tes are compa red with the exact solu tions and

I found wanting. Important statistical quantities beyond the

I
~~ ~ r ~~~~~~~~~~~~~~~~~~~~~~~~



mean square displacement are presented for simple dimers,

P capable of existing in only two states. The generating func-

I tion is derived, together with the higher moments of the
4,/

displacement. Probability density functions for the number of

I j umps in an interval t, for the waiting time up to a specified

jump, as well as for the disp lacements, are all presented.

These differ significantly from the density functions for an

ordinary random walk. However, an averaging technique al lows

simple approximations for the behavior of dimers.

I
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Quantitative observations of atomic clusters in the field ion

( microscope have recently made it possible to unravel the individual jump

processes in the one-dimensional surface motion of dimers.’ This analysis

rests on a stochastic formalism for tl~ diffusion process~ which relates

the mean square displacement of the center of mass to the jump rates of

the individual atoms in a cluster .
3 

Two simple statistical problems

have so far been considered in detail: the mean square displacement of

d imers, made up of atoms in adjacent diffusion channels and capable of

existing in the two states labelled 0 and I in Fig. 1, and the diffusion

f of model trimers for which three jump rates suffice to describe the

motion . Although the basis for an atomic analysis of cluster motion has

been established, it still remains to elaborate the stochastic formalism

and to cover the behavior of more complicated real systems . That is the

present aim. We address ourselves to three related areas :

1. In the diffusion of dimers, dissociation into free atoms occasionally

occurs at high temperatures.3 To assess the significance of these events

in the analysis of dimer diffusion, the mean square displacement is

evaluated for ditners that can exist in an infinity of different states.

2. The actual motion of trimers may depend upon nine different

atomic steps.4 So far, this complicated motion has only been approximated.

Here the diffusion of trimers will be examined in its generality , as a

preliminary to the analysis of experimental observations, allowing all

configurations that can be achieved by moving an atom one lattice spacing

away from its neighbor .

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~
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3. Even for the motion of the s imp lest cluster , a non-dissociating

dime r , only the mean square displ acement  has been worked out.  For a

proper understanding of cluster diffusion , as well as for essesaing edge

v effects in real systems ,
5 the distribution governing the displacements of

d iners must also be known . In the last section this distribution ,

f together with other important s tat is t ical  functions defining the random

motion of diners , is developed .

I I. FORMALISM FOR CLUSTER D IFFUSION

I In the previous discussion of cluster motion in one dimension,
2

I 
only systems with a unique cluster configuration at each position

of the center of mass were considered. This restriction is not inherent

I in the formalism , however, and can readily be removed to more adequately

describe the actual surface motion of clusters. Throughout this presen-

tation we still confine ourselves to clusters composed of atoms in

adjacent diffusion channels, and moving in one dimension only, on a surface

I with spacing L.

We proceed , just as in the past, to follow the migration of an

m-mer by mapping the location of its center of mass on an infinite one-

ç dimensional lattice , with spacing t/m and in sites per unit cell.

The random walk always begins in the unit cell based on x—0. Diffusion

j  U of this cluster is assumed to occur one stout jump at a time; regardless

‘ I 
of the cluster configuration, each jump is presumed to span only a

~~~~ single surface spacing. In specifying the probability of finding a

point x on the center of mass lattice occupied , it is now necessary to

‘‘ .L ~~ 
‘ W ~Jft~ “ ‘

~~~~‘



3

explicitly recognize the existence of energetically different cluster

configurations i. The probability 
~~ 

that point x be occupied is now

I
p — E  p i — 0 ,1,2 , .. .,  ( 1)x x , i

I where the suematjon extends over all configurations i accessible at x.

The transition rates from one site to the next also depend upon the

configurations involved . A general formalism to handle this is outlined

in the Appendix . Here it suffices to specify the rates starting from a given

configuration i, with A denoting the rate of transitions from x to x+l,

I x,i

and i.& the rate from x to x-l . Kolmogorov ’s equation
6 

for the probabilityx,i

I p therefore becomes
x

I ___~ 
x , i

— E A 
~‘ 

- E (A + ~ i + ~ ~x+i ,iI’x+i ,i . (2)
dt x-l ,i x- x,i x,i x,

I
With the additional definitions

I
~ X x ,iPx ,i ~~~~ ~ ~x , i~’x , i ~ (3~

t equation (2) reduces to the usual form

dp

fl X (X
~
+
~~~

)p
~ 
+
~~x+1Px+l 

x 0,±l,±2 (4)— A  p -

dt x-l x-1

) 

() The differential equation for ((~x) 2), the varian~e1 of x , follows

j  just  as previously

dt ~~~~~~~ - - (x ) ( (X
~

) - + ((A ) + (n )) . (5)

r 

d<~~~x 

- . . . . -
~: 1TH~FJ  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
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~ 
I

k However , the possibility of having i different cluster  confi gura t ions , each

j j wi th  it s own characteristic transition probabilities , at any point x , is

now explicitly recognized by noting that
r
4

I <A) — E E ~~~~~~~ ~ ~~~~~~~ 
(6)

(xA
~
) — E x E <~~i)  = E x E

i x i

(x )=ExE p 
~.

I 
~ i x ,

I Although it appears that examination of cluster diffusion in terms

of individual transition probabilities entails greater algebraic corn-

I plexity when energetically different clusters are possible at a given

I 
site, the conceptual framework remains essentially the same as tha t

already useful in earlier, simpler analyses. As specific examples of

the application of Eq. (5) to cluster motion, we will analyze the linear

diffusion of diners as well as trimers. In experimental studies, the

- T emphasis has been upon measurements under steady state conditions, such

that the probability of observing different cluster configurations

~ 1 remains unchanging in time. In view of the complexity of the systems

( of interes t, we shall throughout the first three sections limit

ourselves to this steady state.

Ij I

1’
Th . - - “

. .,
‘
-.- .

-‘
~~~~~~~ -
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)
,
. I

II.  D IFFUSION OF DISSOC IATING DIMERS

A. Mean Squa r e Disp lacements

J In considering the coupled motion of two a toms in adjacent d i f fus ion

cha nnels , it is expedient to label each energetically d is t inct diner

I conf iguration by the separation of the two atoms , expressed in units  of

I the su rface spacing projected along the d i f fus ion  direction , as in Fig . 2 .

On an in f i n ite l a t t i ce, an inf ini ty  of configurations is therefore possible

I on each si te x. The f in i te  range of interatomic forces insures that only

a limited set of these configurations corresponds to bound pairs ; the

rest are independently migrating adatoms . This dist inction will  subse-

I 
quen t ly be of in terest , but is not necessary at the moment - all

configurations can be treated equivalently.

I The rates important for diner notion are designated according to the

conventions illustrated in Fig. 2. Transitions for configuration i to i+1

I are denoted by o’1~ transitions from higher to lower configurations , that

I is , f rom i to i-i , by 
~~

. The scheme of rate constants connecting various

diner configurations is shown in Fig. 3. Three fcatures are important :

1) Even configurations appear on even sites of the center of mass

lattice , odd configurations on odd sites. 2) Inasmuch as only single

jumps are ever allowed , at most two rate constants enter into the

movement of a given d iner configuration from one site to a neighbor.

4 Thus

~ 

— 
~x,i 

+ 
~~~~~~~~~~~~ 

(7’)

where is Kronecker ’s symbol. 3) The rate constants depend only upon

the dimer configuration, and not explicitly upon the position x.

__________________________ — —~~~.——-———-- .—~~ .—~~- ,,. .. 
_________________________

I ~~~~
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It is now an easy matter to evaluate the different contributions

to Eq. (5’). The rate constants averaged over position become

= 
~ 

(A~~ 0~~~~ + A~ ~~~ 
+ A~ 2~ x 2 + 

~~~~

— ~ [a’~ + 
~~~~~~~~~~ 

P~ . (8)

Here we have adopted the notation

I a 

~~~~~ 
x = O ,±l ,±2 , . . .  (9)

to deno te the probabili ty of find ing a specified configuration i , regard-

I less of position on the center of mass latt ice.  The other terms appearing

in Eq. (5) now follow immediately.

I
(
~~) — E + 

~1 ~~iO~~~i 
— ( A )  ( 10)

(xX x) — Ex( X
~ O~x + x,~ ~~~ 

+ ~~ 2~x 2  +

‘1 — 
~ O(x> O + ~~l~~ l )<x ) l + (

~2~~2
)(x)2 +

j 
— 
~ 
[
~ i~~1

1_o
1o ](x)~ 

( 11)

I (1 Here

( X >
k 

— E xp k (12)

If 
x



1 
7

denotes the space ave rage of x for a specified configura t ion k;  depend ing

upon the parity of the configuration , this average will include either

even or odd sites exclusive ly. F inal l y ,

I 
~
) = E [~~~~ .(1-6 .~~)](x) = ~x X )  (13)

I
Onl y two te rms contr ibute to the d i f f e rent i a l equation for the

I variance of x , which now appea r s as

I ~~~~~~ 2) 
= + (~~) = 2 E ~~~~~~~~~~~~~~~~ . ( 14)

I
We shal l be concerned with the behavior of d imers over time intervals

I long enough for a steady state to be established ; the terms = 
~~

I 
then no longer vary in time. Under these circumstances the requirements

of detailed balance are satisfied if

P
1 ~~~ 

P2 ~~~~~ 

P
~~1— =

~~
— , — =

~~
— , — =

~~
—-—— (15)

0 1 1 2 i i+1

andI p
1 — ~~ 

po~ P2 
— P

1 
— po, P j~~1 

= ~o 
~~~~ 

. (16)

~ I
The normalization requirement

2 P 1 — i  (17)

now allows us to write

$ P0 
- (1 

+I)
1

i j—O ~

(I
‘ I
— 

- — -—.—-

~~

.... .~ .!~JJ - 
- 

~~~~~ - - _, .,_~~~~ __ -
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In the steady state , only constants appear on the right hand in Eq. (14).

Furthermore , for the long time intervals characteristic of the steady

state the precise starting point becomes unimportant. Equation (14)

can now be integrated to give the variance of x:

I ((~ x)
2
) 2t E [

~~~~j
(l-o .0)JPj. (19)

4 1
Using relations (16) and (18), this becomes

I
~ (Ax ) 2 ) = 2t + + 

~~~~~~~~~~~~ 
+ .~~j

• 1.
(1 + E  I1o~./~~.)

I i i ~~i~~ ~ ( 20)

(1 + E II ct’ ./ ~

I 
We now have quite a general relation for the variance of the

d isp lacements executed by a diner. This relation is capable of describing

contributions from an unlimited number of different configurations ,
8

provided only that the transition rates and are all known. For

our purposes, however, it is convenient to distinguish , somewhat

artificially, between two types of configurations: those with j
~ 
small,

for which the two atoms of the dimer are bound to each other, and those
p .

with i large, for which atomic interactions have decayed to such an

extent that the atoms move independently. Assume that the latter condition

- holds for 1. � f ;  then

~~~~~~~~ 
‘ �~~~ 21



j I where ~ denotes half the total jump rate of a single atom . The factor

fT of 1/2 accounts for the fact that in the diffusion of single atoms , the

total jump rate, rather than the rate in a specified direction , is

traditionally specified. Equation (20) can now be written in the

alternative form

2 f-i
< ( ê~x) ) = 2t( E + 

~1
(l_o

~ o
)]P

~ + 2c~P), (22)I
where

I p a 
~ p (23)

~ i � f ~~I
denotes the probability of finding a free dimer.

B. Specific Examples

I In the limit P5—l, that is as dissociated diners dominate , the

I 
variance of the displacements , Eq. (22), becomes

— 4Q’t . (24)
t I

This describes the movement of two free atoms on the center of mass

lattice, with a grid spacing of L/ 2 .  For free atoms, an expression for

< (i~x) ) can be obtained independently of the preceding, The coordinate x

of the center of mass is related to the coord inates y1 and y2 of the

2 a toms on the real lattice by

x — y 1 + y 2 . (25 ): 1
It therefore follows that

((Ax)
2
) - ((Ay

1)
2
) + < (Ay 1)

2
) + 2 (Ay 1Ay 2> . (26)

_ _ _ _ _ _ _ _ _ _ _ _ _  .~~ ~~~~~~~~~~ - --- ---—-— - 
- - . -

~ 
~~~~~~~~ ~ i’- ’L~~. ‘%~~~~ 
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I If the movements of the atoms are uncorrelated , then

( (Ax) 2) — 2((A y) 2) . (27)

For the random walk of a single atom,
6 
however, we have

- < (Ay)
2) — 2 o~ t , (28)

I 
yielding for ((Ax)2), the variance of the center of mass coordinate ,

exactly the same expression as derived from our general formalism for

I pairs.

If dissociation is unimportant , so that P5—0 and only the two bound

states  0 and 1 are possible , then cv1 0 and Eq. (22) transforms to

I ( (Ax) 2
> 4ri~~ 1t/ (cv0 + ~~~ 

(29)

— the relation already derived in I. This model appears to describe the

I available data for diners on the (211) plane of tungsten. However, in

quantitative studies by Stolt et al. ,3 the d imera were observed to

dissociate occasionally. In order to estimate the effects of such events,

.,. we assume that diners in configuration i � 3 are entirely free and that
I

atomic interactions have ceased to be important once the interatomic

-: j separation amounts to U. This situation is indicated schematically by

the potential diagram in Fig. 4. The transition rate 
~2 

is then just

equal to the rate ~ in the free dimer ,

f — v~ exp - AE~ /kT, (30)

where AE~ is the activation energy and the prefactor for jump ing.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The variance of x now becomes

((Ax)2) — 4tp 1[~~1 ~~~~ 
+ a’[p

2/( 2p 1) + p / p
1] )  . (31)

The probability ratios P2/P 1 and P
8/P 1 depend only upon the

thermodynamics of the different diner configurations and in principle

are accessible to direct observation. The rate o~ is available from separate

measurements on the diffusion of single atoms. This still leaves the two

transition rates and cw 1, with only Eq. (31) to connect them to

( experiment. However , the rate at which dimers change from configura-

tion 1 to 2 is fixed within limits by the ratio P2/P 1, that is, by the

I thermodynamics of configuration 2 relative to 1. In the worst case, we

are likely to have

— v exp - AE4: /kT , (32)

•
• 4: 4:with v , AE — AE ; a more likely event is tha t

-~ AE 4: + cE 0 < c � 1, (33)

I 2

where E
2 stands for the energy of configuration 2 relative to that of

t f configuration 1.

.4 Numerical estimates for the effects of dissociation upon the mean

square displacement are shown in Fig. 5 for a system modeled on the

behavior of rhenium diners on W(2l1).
3 

It appears that dissociation can

significantly affect the mean square displacements. If a sizeable

I fraction of the diners can transgress beyond the 0 and 1 configurations,

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _
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- then ((Ax)2) diminishes , as the mobili ty of f ree atoms in this model

system is less than that of bound diners. It is obvious that these

1 
effects must be allowed for in the ana lysis of experimenta l observations.

The corrections for dissociation do not sensitively depend upon the

I particular assumptions concerning 
~~~ 

the unknown rate of transition from

I configuration I to 2 . Even in the unlikely worst case , the variance of x

differs only by u 107, from that found with the more likely smaller values

of cr 1, for which the actual magnitude of the rate has hardly any effect

I
on ((Ax)

2
). It is of interest that the dependence of the variance upon

the particular assumptions concerning 
~~ 

is greatest when the frac tion of

I diners in state 2 is least. In principle , it is pos sible to have an

entirely negligible amount of dissociation and yet have important contri-

I butions to the diffusion from configurations such as 2. Physically this

I 
happens if transitions from configuration l to 2 are possible, but the

return rate is much faster. No appreciable concentration can build up

I in state 2; every time a transition into this configuration occurs, it is

immediately followed by the reverse process. However, each of theset I events means a displacement of the diner above and beyond that of a

diner with only two allowed configurations.

It is important to consider this possibility in interpreting the

diffusion of diners. Even if no dissociation is actually observed in

an experiment , the analysis should properly be carried out with a model

incorporating the effects of dissociating diners. This can be accomplished

using the thermodynamic information to guess at the value of the transi-

I tion rate from configuration 1 to 2 , and estimating the j ump rates with

and without allowing dissociation.

I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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III. TRINER DIFFUSION

4
The linear migration of trimers can be hand led in much the same

way as that of dimers , although the nomenclature becomes more comp licated .

The unit cell of the lattice on which motion of the center of mass is

I mapped now contains three points; as shown in Fig . 6 , two energetically

di f fe ren t  trimer configurations are possible at each such point.  The

I convention found useful in designating diner configurations in Sec. II

I 
no longer suff ices fir  trimers. We therefore retain the labelling devised

in I. In this scheme , slanted or V shaped configurations are distinguished

I from the others by adding B or A respectively to the usual configurat ion
9index. The different  terms entering Eq. (5) for the variance of x can now

I be readily evaluated. Keeping in mind that trimer configuration 0 occurs

I 
only on sites of type 0, configuration 1. on sites of type l, etc., it

inw~ diate1y follows that

I ~~~ 
— (a 1+a11) 

~~~~~ 
+ a111 E0P~~ 0~

1’ + (b
1+b 11) l~’x ,LA + b111 Z 1Px , IB + (c 1+c11) E2P~~~~, (34 )

.
~ P + c111 E2p

~~ 28

I
symbols such as E1, for examp le , indicate summation over x for all sites

of type 1. The averaged transition rate (A) can be written more compactly

as

I < A )  — (a
1+s 11) P~~ + (b

1
4b11)P~~ + (c1+c11)P~~

+ aIIIPOB + bIIIP1B + CIIIP2B ‘ 
(35)

where , in conformity with the conventions for d iners , we use the

‘ 1
~~-~~~ T i ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~

‘ 
.-.“ -
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abbrevia t ion
3

GA — 0~x , QA

to describe the probability of finding a configuration , such as GA in this

instance, regardless of position x. We recall2 that under steady state

conditions these probabilities are connected by a number of simplif ying

relations:

~lA~~~~ 2A ~lB~~~~2s

r “lA ~QA 
a1~~1 ~1B — 

~QA a11/c 111 (37)

P — p  a c  /~ c aOB GA I I I ’ I III

I — + 2a
1/c1 + 2a 11/e 111 + a1c11/ (c 1a111)]

I Equation (35) therefore simplifies to

I ( A )  — + a II )P GA + (b 1 + b 11 + c1 +

+ a111
P
0~ 

+ (b 111 + c111)P 1~ (38 )

Similarly,

— (a
1 + + (b

1 
+ b11 + c1 + cII ) P 1A

- 
+ a111P~~ + (b 111 + c111)P 18 - < A r) (39)

<xX ,c) ~ 
x[ (aj+.11) p

~ GA + aIII pX ~~ 
+ (b i4bi1)p

~~~~

+ bIIIpx lB + (c
i
4c

ii)p~ ~~ + c III px 2 B ]

— (a
IaII)(x)GA + (b 1+b 11)(x>~~ +

+ a111(x) ~~ + bIII (x) lB + c111(x )
28 . (40)

III. — —
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Here we have resorted to the convention

(x)~~ ~~E1xi~~~~ (41)

to indicate the average of x for a specific trimer configuration, in this

instance 1*. The last remaining term in Eq. (5) is

( x )  — (a I+.II )(x) GA + (C1+c11)(x)~~ + (b I~
Fb II )(x) 2A +

+ c III(x)
lB + b III(x) 2B . (42)

The differential equation for the variance of x can now be written as

d( (A~~
2) 

- 2f (b I
_c

I~~ II
_c

tI )(( x) M
_( x) 2A ) + (bIIt

_c
ttl)((x)IB

_ (x)ZB)

+ PGA[2(a I4eII ) + (b 1+2b 11+2c 11)a 1(c1]} . (43)

We still require the two terms

XA 
a (~)~ - (X) 2A, (x)lB - (x)

28 . (44)

To der ive these we need the probability 
~~~ of having a specified

configuration at the point x. This can be obtained from Kolmogorov’s

equation, as shown in the Appendix. For 
~x IA 

as an examp le, the appropriate

differential expression is

dp IA
— a

I
pX_l ,GA + a111p 1 GB - (b

I
4bII +c

I
.I.CII )p

X I A

Li 
+ btp~+i ~ + b

titp~+i23 
. (45 )

It follows in the usual way that

I
_________________________ ________________ -~
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dt — a
I
((x)GA+PQA) - (b I+c I+b II+c II )(x ) IA

- 
-s b i ( ( x ’

~?A
_P

~~
) + a III ((x) OB+P~~

) + b ItI ((x) 2B
_P

28 ) . (46)

c
-~~ In much the same ~shion, it can be shown that

I d(x)~~
dt — b

I((x> IA+PIA
) - (b 1+c1+b 11+c11

)(x)~~

1 + a
I
((x)GA-PGA) + aIII((x)OB-POfl) + b111((x)1~+P1~) . ( 47 )

I Using the steady state relations (37) and the definitions of Eq. (44),

I we find

dX
— - (2b I+c I+b II4c rI )XA - b IIIX

B 
- 2(b

I
_c
I+bII

_c
II )PGAaI/cI . (48)

The differential equation for follows from an analogous sequence of

I steps as

1 4 - - (b
111

4.c
111

)X~ - b IIX
A 

- 2(b
11
a
1
/c1 - aII )PGA. (49 )

I Only the steady state, in which the time dependence becomes unimportant,

is of interest. Equations (48) and (49) therefore reduce to

(2b
1 + c1 + bII +cII )XA + bIII XE 

— - 2(b I-cI+bII ~
cII )PGAaI/cI

I b lIXA + (b t Ij+c tII )XB — - 2(b
11a1/c1 

- aII )P OA ‘ 
(50)

j  with the solution

XA~~~
2PQ~~~~~~ 

XB
.. 2PGA

_L_
~
. 

(51)

a [b
111(b 11-a 11c1/a 1) - (b 1—c 1+b 11-c11’~(b 111+c111)]

I [b
11

(b
1
—c
1+b 11—c11) - (b

11
—a11c1/a 7

)(2b
1
4c

1+b114c11)]
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A a (2b 1+c1+b 11+c11)(b ) — b
11

b
1H

Substituting these results in Eq. (43) and integrating , the variance of

the center of mass displacements for trimers appears as

( (Ax) 2) — 4tPGA[(bI~cI~~rI
_c

II
)A
A /A +

+ c1(14e11/a 1) + (b 1+2b 11-i.2c
11

)/2] a 1/c 1 . (52)

H In the l imit  as a
11 

— b 11 = c11 — 0, trimer migration can only proceed

through A configurations . This possibili ty has been treated exactl y in I .
I For such a di f fusion path , Eq. (52) simp lifies to

I 
_ _ _ _ _ _ _ _ _ _ _ _( (A x ) 2 ) — 

18 ~1b1c1t (53)(2a 1-f.c 1)( 2b 1+c1)

I
which is precisely the relation previously derived . If the transition rates

I meet the cond ition b
11—c1—O, then diffusion must occur by movement of the

trimer through the configurations GB, LA, and 2A only. This const i tutesI another symmetrical path , for which Eq. (52) yields

- I  
_ _ _ _ _ _ _((Ax)

2
) — 

18 a111b1
c11t (54)(2a 111+c11)( 2b 1+c11)

again in agreement with previous work.

/ 

The complete equation for trimer diffusion involves nine transition
4

rates. These are not all accessible to direct observation in any- 

straightforward way, but Eq. (52) makes it feasible to model the behavior

J U of trimers for a known interatomic force law. An approximate procedure has

been suggested in the past.
2 In this the motion is idealized as occurring

I via a sy~mnetric path through the unit cell; average rate constants are

_ _ _ _ _ _ _ _ _  - - - ,~~~~~~~~~~~~~~~~~~~ 
_ _ _ _ __ _ _ __ _ _ __ _ _ __ _ _ _
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c then used to account for the presence of energetically d i f f e r en t  con-

figurations at a lattice point. Tests with model potentials reveal tha t

this approximation works surprisingly well in many instances, yielding mean

I square di sp lacements within 257. of the true values. Under these circum-

I 
sta nces the d i f fus ion  parameters deduced from the usual Arrhenius p lo ts

are essentially without error. However, for some combinations of physically

I reasonable rate constants the average rate approximation fails by more

than an order of magnitude. Despite its comp lexi ty, the exact

I rela tion (52) for the variance of the center of mass positions must

there fo re be u sed in modeling the di ff usion of trirners.

IV . STATISTICS OF T%~~-STATE DIMERS

I The emphasis up to this point has been upon the mean square disp lacements

I execut ed by the center of mass of a cluster during surface d i f f u s i o n.

The distribution of displacements, as well as higher moments of the distribu-

tion , are also of concern . From a pract ical  point of vi ew , we note that  one-

dimensional d i f fusion is observed on planes of finite size, so that  corrections

‘ ‘
~1 have to be made for the possible effects of the edges. The simple relations

available for this, however , are based on the assumption , as yet not tested ,

1 that the displacements can be approximated by a Gaussian distribution.

J 

More than that, the one-dimensional motion of clusters also constitutes

a novel type of random jalk, of interest in its own right . Here we there-

I fore derive several statistical quantities important in describing cluster

motion .

__________ — ~~~~~~~~~~~~~~~~~~~~~~~~ ~~ •• •••••~ ~~~~~~~~~~~~~~~~~~~~~~ “--
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We conf ine  ourselves to the s implest c lusters , to dimers that  can onl y

exist in the two configurations 0 and 1 indicated schematically in Fig.  1.

Transitions from x.0 to x 1  are assumed to occur at the rate a, from x 1  to

x—0 at the rate b. That is , in the general scheme indicated in Fig . 2,

and r- .~=b; all other ra tes vanish. To ease the derivation of higher

moments , which in principle are directly accessible through Kolmogorov ’s

equation, we first develop the probability generating function G(z), defined by

G(z) a ~ ~~~ x - 0, ± 1, ± 2 , . . .  . ( 5 5 )

The d is t r ibution governing d iner di splacements is presented separatel y.

I Also of interest for characterizing the random walk of diners is the

I probability density function for the total number of jumps , and for

the t ime required to make a fixed number of jumps , the fir r of which plays

a key role in the d i s t r ibu t ion of disp lacements . In the last ~ectio n , both

are derived and compared with the behavior of simp le random walks.

I A. Generating Function and Moments

t Starting f r om Kolmogo rov ’s relation , Eq. ( 4 ) ,  it follows qui te

general ly that

I I G ( z )  
— z~~~~~~~~1 

- + + E z~ X 1p
~~ 1 . (56~

For d iners , this d i f f e r en t i a l equat ion reduces to

G( ) — (u - 2)( aG 0 + bG 1) ,  (57)

where G(z)  denotes the t ime derivative of the reiterating function and we

have introduced the definitions

I
h 

G 0 E0
z~

C
p (58)

Cl 
C E1

zXp

- ~-~—
- -

-- - - ~~. -
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To proceed further , the sums G0 
and G

1 
over even and odd sites , respectively .

must be expressed in terms of the dimer transition rates . Again from

Kolornogorov ’s relation , we find the coupled differential equations

buG
1 

- 2aG
0

I Gl 
- 2bG1 . ( 5 9 )

I 
Laplace transforma tion converts these into the form

(s + 2a).C[G
0
) - bui[G 1~ G~ [ t 0 ~

I (60)
- au.~[G

0
1 + (s + 2b ).~f G 1} = c1[t=0]

s is as usual the argument of the Laplace transform , and the values of

C0 
and C1 at time t=0 are denoted by G0E t=0] and G1[t=O] respectivel y.

- I  
10

For excursions starting from even sites,

I c~
0
~[t—o] = 1, c~

0
~[t=o] = 0 , (61)

for excursior~’ from odd sites,I c~~ [t=oJ = 0, G~
1
~[t= 0] — z; (62)

I the origin of the dimers is indicated explicitly by the appropriate super-

script. For the moment confining ourselves to excursions starting at an

even site , we find

- 
.C[G~°~3 — 

s + 2b (63)
0 (s + q)(s +r)

— 
au

I (a + q)(s +r)
4

4 V 
where

I

________________________ - - -~ - ~--~--- - — — — — — —--——--- - — -. —
~~~

.—-— -—- ~~~~~~~ - - 
-
~~~~ -~~~~~~~~~

- - -
~

- - - - . 
- - 

- -
~~- - ~~~-
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q a (a + b)f l  + Cl + ab(u
2 

- 4 )/ ( a
(64)

(a + b)(1  - [i + ab(u2 - 4)/(a + b)
2]½)

The inverse transformationU of Eq. (63) yields the desired quan ti ties

— 
(q - 2 b) 

exp(- qt) - 
Lr -2b) exp(- rt)

- - 
(q ~~r) 

{exp (- qt) - :XP(: rt)] . 

(65)

I Subst i t ut ing these in Eq. (57) and integrating gives the generating func t ion

fo r starts  at even sites as

I C~~
0

~~(z) = 1 + 
a(u :2) [[q-b(u+ 2 ) ] [ l -e x p ( - q t )~ /q

I - [r -b(u+2)] [l -exp( -rt ) ] /rJ . ( 6 6 )

A similar  sequence of Steps yields the generating function G~
1
~ (z) for

excursions from odd sites :

I C~~~ (z)  - + 
zb(u -2)  {[q-a(u+ 2) ] [ l -exp( -q t) ] /q

- [ r—a(u+2 ) ] [ l -exp( - r t) ]/ r }  . ( 6 7 )

In the l imit  as the transition rates a and b become equal , the generating

.-
~~ 

function for starts at x0 reduces to

(xo) x~
C (z) — z expa (u-2)t a b , (68)

appropriate for a simple random walk over discrete sites but continuous
(1

j  U in time.

I

A
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 

-.

~~
- -

~ 
- - 

‘
~~~~~~~
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I The 
th 

(x~~ of the coordinate of the center of mass is nown moment

I easily accessible ,
6 
through repeated differentiation of the generating

function according to

I (z  —
~
-
~)~ G ( z ) 1  = x p ~x . ( 6 9 )

n n~
I Xz— l x

I We disp lay only the 2nd and 4th momenta; the odd moments vanish for

excursions s ta rt i ng from even s i tes .

I ~~
2
>
(0) 

= _a! [2bt ja-b)
a+b + 2(a~-b) L l - exp - 2 ( a - f b ) d)

(70)I 2 ( 1) 
— 1 + ~~~~ [2at  - 

(a-b) [l- exp-2(a~~ ) t~)
X ) 

a+b 2(a-+b )

1 4 (0) 8ab 2 
_ _ _(x ‘

~ 2 t 6abt +3at exp-2(a+b)t
(a+b )I 
_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _+ 
(5a 2_5ab+2b2)t

+ 
(a-b)(a2-28ab-f7b2)[l-exp-2(a-i-b )tJ)(a+b ) 

8b(a+b)
2

I (71)

~ (1) 
— ~ + 

8ab (6abt2-3bt (a-b) exp-2(a+b)tI 
x 

(a+b )

+ 
(5a2+ab4Ob

2)t 
- 
La-b)(13a

2
-l6ab+7b

2)
[l-exp-2(a+b)t]}T (a4b ) 

8a(a+b)
2

fl In the limit 
~~~ 

the moments simplify to

(2)(O) — 2at

/ 2~ (I )
~x / — 2a t + l  (72)

~~~~ 

- 

/ 4~(0) 12a2t
2 

+ 2at

— i + 12a2t2 + l4at . (73)

These are precisely the values for an ordinary random walk in continuous

1 - time .

j  
_ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
- 

- - -i-Ti—— 
~~. --:•—— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —
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For a Gaussian walk characterized by a total jump rate 2) and

starting at the origin ,

4 2 2(x ) — 3 (x \
(74)

(x
2
) — 2)t

We note that in the limit of long times, only the first term in braces

occur r ing in Eqs . (70) and (71) contributes. In this limit , therefore ,

I the ratio of the 4
th 

to the 2nd moment for diner disp lacements is exactly

that for a Gaussian walk. The 2~d moment for d imers is, of course , equal

I to that of a Gaussian, but with an effective jump rate X — 2ab/(a+b).

I In shor t, for the lower moments at least , a Gaussian approximation is

appropriate.

I B. Probability Densities

1. General Approach

In principle the distribution governing cluster disp lacements can be

I obtained from the generating function G(z) by expansion in a l aurent

series. We adopt a simp ler , physically more transparent approach .

I For the center of mass to end at point x af ter  N jumps , having

started at x , it must take [N + (x - x )]/2 steps to the right and
0 0

[N - ( x—x 0)J /2 to the lef t ;  jumps to the right and to the left are assumed

equally probable. The conditional probability f(x~N) of ending at x, given ~
total of N jumps, therefore obeys the binomial law

6

N
s fix iN ) — 2—N (7 5)

N+x-x
0i f ;  21 ’

~ I I 
note that f [ x N 3  — 0 if N ~nd (x-x0

) are not of the same parity. The

joint probability f[x,N} of the center of mass being at x after N jumps is

it 
_ _ _ _ _ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _

I I — — - - - ~~ F L  —



I i 
24

f[x ,N) — p
N(t) 1d I~~ 

, (76 )

where pN(t) denotes the probability that during an interval t a diner will

make a total of N jumps .

To obtain the desired probability p of a diner ending at x, we just

sum 12 over all  jumps N

— E PN(t)fIXJN) . (77 )
N-O

it now remains to derive the probability density p
N(t) describ ing the

total number of jumps executed by the center of mass during time t.

j  Closely connected to the number of jumps during such an interval is the

I 

time T
k required to make a fixed number, k, of jumps. Although not

directly involved in arriving at p ,  the time distribution is of in t erest

I in characterizing those aspects of the motion of diners distinct from

ordinary random walks. The probability densities for N and for Tk are

therefore derived separately in the next two sections.

2. Probability Density for the Number of Jumps N
r

We seek the probability p
N(t) that, as the dimer moves along the lattice ,

it will make a total of N jumps in the time interval t. Let denote
- 

the rate of making the (N+l)
th 

jump. Inasmuch as the number of jumps N

can never decrease, Kolmogorov’s equation for pN(t) becomes
13

dp0(t )

dt 
— - X

0
p
0(t) (78)

I dpN ( t )

dt — X N_ l~ N_ l (t )  - X
N

p
N

( t )  N > 0. (79)

- j  
_ _  _ _ _ _ _ _

- 
-.u.

~~~~~~~~~~~~~ .—-—-———- — —--- — :1— .
~- - . 

-

- ~~~~~~~~~ 

_
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~ •1

_
~~

- ~~~~~~~~~~~~~~~~
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I The Laplace transforms of pN(t) are therefore

I £[p
0
(t)) — 

1 (80)
s + X

0

I .
~~~N

(t)J —
a + AN ~~N_ l

t
~
t)) N > 0. (81)

I
Equations (80) and (81) immediately lead to the general relation

I
N-I

I x{p (t)] — 11 N > 0. (82)N s + X  s + X0 j—O j+l

I If excursions start at an even site, then the rate of jumping for dimers is

i 

given by

A
~~
.2a N even

A
N — 2b N odd . (83)

I 
We shall only present solutions for this situation, but note that for

excursions starting at an odd site, a and h are interchanged throughout.

I 
With the rates defined by (83),

8

(t)~ — 
(2a)N~

S’2(Zb)N~
l2

N even (84)
(s+2a)~~

’2
~
”2(s+2b)~~

2

4 (2a)~~~
1
~

12(2b)~~~~~
”2

.C[p~
0
~(t)} (s+2a)~~~~~~

’2 (s+2b)~~~~~
”2 

N odd . (85)

and givesA ~ For an odd number of jumps the inverse transform is immediately available ,

I 4°~(t) — 
(2~~~~~~~~~(2~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ (86)

[2(a-b)J~~
2

/4 ~ N odd .

F
t

. 

_ _ _ _ _ _ _
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The solution for an even number of jumps is obtained , by substituting

(86) in Eq. (79) and integrating , as

= 
(2a) t*

~
’2 ( 2b)~~

’2 fl~ t + / ’2
~~~~ [_  (a+b ) tJ11 [ -b t]I T’N 2(N / 2) ! [2(a-b)]  

(N_ i) !2 ( N — i ) / 2  (a )

I 
-

I N even . (87)

Here In~~(z) is the modified spherical !~esse1 function of the first kind .

I As the rates a and b approach each other , dimer behavior becomes

I independent of site, and the total number of jumps should therefore

conform6 to a Poisson distribution. The limiting form of p
N(t) when a —b

1 can be obtained making use of the series
11

4 — 
Z
n 

~l + z2/2 
+ 

(z 212)2 88I 2z n+½ 
— 

1•3’5. . .(2n+l ) 1!(2n+3 ) 2 !(2n+3)(2n+5 ) + ( )

I and the identity

135... (2k_1).(2kk!)= (2k)! . (89 )

Both Eq. (86) and (87) reduce to the proper form
1~

t i .  N
p (t) — 

(2at) exp - 2at 
. (90)N N’

The probability density for the number of jumps by a dimer is
I 

compared in Fig. 7 with the behavior typical of an ord inary random walk ,

for which the jump rates are independent of position , and ~ — b . As expected ,

when the jump rates differ significantly, there are pronounced variati ons in the

_ I probability density on going f rom an odd to an even number of j umps.

- -:

H 4I —
_ _ _ _ _ _ _ _ _

____ 

..‘~ ~~~~~~~~~~~ ~~~
- — -—~~~~~ -~~-~~--

-
- - 

- - 
- - ~~~~ -



I
In Fig. 8, the average of the probabilities for two neighboring jumps ,

I 
when the rates a and b are significantly different, is campared with the

same average for a Poisson distribution, characteristic of an ordinary

I random walk. The agreement is quite reasonable. Averaging over adjacent

I 
values of N eliminates the large excursions in the probability , revealing

overall trends for dimers which are quite similar to those in a simple

random wa lk .

3. Probability Density for the Waiting Time Tk

Basic to the development in this section has been the assumption that

I 
cluster diffusion can be described as occurring via a tomic j umps random in

time, with transition rates depending only upon the state of the system

I from which the jump takes place. That is, the elapsed time between

jumps i and i + I has an exponential probability density

f
i
(T) — A~exp 

- , (91)

where denotes the rate of the (i+l)
th jump. The tine T

k 
at which the

k
th jump takes place is given by the sum

k-l
Tk 

E . (92)
i—0

n
The waiting times for individual jumps are independent quantities , each

with a characteristic function

exp(jGr)f1(r)dr — (93)

I where 1
2_ -1. Because of this independence, the characteristic function

4 1 øTk
(e) for the probability density of Tk ~

iii ________________________
—--S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~-~ - -~~~~~~ -
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~T 
(0) — II ~~(0) — 

- 
. (94)

k i—0 i—O i -~

Substituting the jump rates (83) appropriate to diners, the characteristic

function of T
k 

for excursions starting at an even site is found as

I
40) (s) _ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

J 
k 

k odd

(95)

~Tk
~ 0~ [2a/(2a~j8)]~~

2
[2b/(2b~j0)]~~

2 
k even.

I
For excursions from odd sites , a and b must be interchanged . The desired

probability density function ~~ (t) is now obtained from the exponential

Fourier transform’4 of ~ (9) ,Tk

fT
k~
t) - 

~~~~~ 

exP(-jOt)
~T

(O)dO , (96)

as

4°~( t )  - (2a)~~~~~~
2(2b )~~~~~

”2exp(-2at)
k

x [t k4/ (k_ l) !J 1F 1[ (k_ I )/2 ;k ; (2 a_ 2b) t ]  k odd

(97)

fT
k
(t) — (2a )~~

2(2b )~~
2
exp~(2at)[t

k_ h
/(k_l)!]

1
F
1
[k/2 ;k ;(2a_2b)t]

k even .

Here 
1F1(a; c; z) denotes Kuniner’s confluent hypergeometric series.

In the limit as A—k1 jumping becomes a Poisson process , in which the

waiting time for the k th jump is known to conform to a gamma distribution. 6

Also in thts limit, the Kun~mer functions in Eq. (97)
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j ~ approach unity. The probability density for the tine at which the k
th

t jump occurs then is

— (2a )k[tk~~/(k_l)!]exp - 2at . (98)

As expected , this is just the gamma distribution of order k.

I Probability densities according to Eq. (97) are plotted in Fig. 9.

In these graphs , the probabilities calculated for different values of the

rates a and b are compared with each other, always keeping A — 2ab!(a4b)

I constant. When the number of jumps k is small, different choices of !

and b yield significantly different curves. Of course for k even, the

I plots are invariant to an interchange of a and b. Despite that , the

probabilities for a are not similar to those for ~ — ~~. As k becomes

I large, however, these differences diminish; the waiting times can then be

I 
reasonably approximated by a gamma distribution , calculated for the

effective jump rate A.

1 4. Distribution of Displacements

With the probability density pN(t) for the number of jumps during anI interval t in hand , we can now write out the probability density for x.

* 

Using Eqs. ( 7 5 ) — ( 1 7 )  as well as (86) and (87), we find that for starts at

an even site ,

~~ 
— ‘~~~~~

texp[ - (a4~) t]L (~)!(~~~!~)~
N/2

2N[2(a_b) jN/2 (I(N,l ),2[(a_b)t] - I(N+l )/2[(*_ b)tJ)

x,N even (99)

- I  
_ _ _ _ _ _ _ _ _  

_ _  

_ __________________ _________________________________
- 

.-. 
- 
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~x 
-!~~

exP[-(a+b)tJ!
(N 

~~~) 
2N~2~~~~ ]N/2 IN/2[(a~

b)t]

- .  

x,N odd

I If the initial position is an odd site , x on the rhs of Eq. (99) is rep laced

by x-1 , and the rate constants a and b are interchanged .

I In the limit a—b , it follows immediately from Eqs. (88) and (99)

I 
that

i 
= exp(- 2at) 2 (at)N [(~~ )!(~j~)! exp (- 2at I

~
(2at). (100)

I That is, the probability density of x reduces to the form known6 to hold

for an ordinary random walk continuous in tine. It is of interest to

I compare this limi ting densi ty with that describing the actual displacement

I 

of dimers , according to Eq. (99). This is done in Fig . 10. The distribu-

tions clearly show two effects: I) A gradual decrease in the probability of

being at a point x as x increases. 2) Strong oscillations , caused by

differences in jump rates from even and odd sites. It is clear that a

Gaussian can be seriously in error as an approximation to any individual

- value of 
~~~ 

Averaging the probability over adjacent sites, however ,

I reduces this problem. In Fig. 11 , these averaged values are compared with

a Gaussian, all at the same effective rate A — 2abf(a4b). Even wI~ n the

rates a and k are quite different, a Gaussian serves as a reasonable

approximation to the averaged probability of finding a dimer in a

~~~~~ specified unit cell.

ii
I

I
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V . SUMMARY

Elementary statistical techniques have been used to evaluate exactly

the mean square disp lacement of small clusters , capable of existing in

energetically different configurations at each site of the center of mass

lattice. Two specific problems have been examined - the diffusion of

dissociating diners , and of bound trimers . The techniques used for the

latter should also be adequate to describe the motion of larger clusters.

I However , the present development already suffices for the analysis of

I 
available experimental information , which will be presented separately.

The evalua tion of the probability densities described here is more

I limited . Our approach is specific for diners; examination of larger

clusters will  require new techniques. Even for such clusters , however ,

a crude estimate of the distance distribution should be possible by

resL’rting to the averaging procedure found useful for diners.

I
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t~. APPENDIX : K0L~)GOR0V’S EQUATION FOR

If the primary concern is with the probability p that site x be

occup ied regardless of cluster configuration , then the formalibm in

I Section I suffices . A more elaborate symbolism is required to evaluate

I the probability 
~~~ 

that a specified configuratio i I be at a given site.

In general, rate constants for jumping from a site to its neighbor will

I depend both upon the initial and the fina l configuration of the cluster .

We therefore denote the rate constant for transitions from x to x+l,

I starting in configuration h and ending in configuration j, by A X h ~~
;

I 
similarly the rate from x to x-l , starting in configuration h and ending

in i is indica ted by 
~x,hi The Kolmogorov equation for the probability

I of having a cluster at point x in configuration i , can now be 8/ritten

I 
____

dp
~~j = 

~~ 
Xx_ l ,hiPx_l ,h 

- 

~ 
(X~~~~ + ~x,ih~~x,i

+E hi ~x+l h (Al)

1:
This relation is crucial to the discussion of trinier motion , for example.

It is the basis of Eq. (45),  for the probability of finding a trimer in

configuration IA.

In general , this detail is not necessary. We then regain a relation

~ I for the probability p of site x being occupied , regardless of the particular

cluster configuration , by summing Eq. (Al) over all configurqtions j. at x.

That is,

I dp x ,i

dt 
— 

dt 
— 

i,h 
x-l , x-l , i 

- 

h i  x,ih + 
I.L
x i h )px i  

(A2)

+ 
h ,i 

1
~x+l,hi~

’x+l ,h

______-— - -~~~-
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i t  is now useful to introduce the definitions

E A
i h  

x,ihx ,i

I (A3)

i,h 
x,ihx ,i

I By the same steps ske tch ed in Sec tion 1 we obtain the differential equation

for

d~ (~~~)2~ 
- 2L (x X ) - ~ )~~~~~~~ I - I x )U A )  - (

~~~
)] + ((X

x
) + ~~ ) ) •  (A4 )

I However , a more elaborate convention for the different symbols must now

~~~~
- recognized :

I
— E E A x jh px j  = E 

•~~~ ~~~~~ ih~x,ix i ,h x i ,h

— 
~ 

X
x,i~~x.i ~~~~ 

= 
•
E 
~x,ih~x,i (A5)x i ,h - x i ,h

I’

I
I

I t
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FIGURE CAPTIONS

Fig. 1. Schematic of d imer and trimer configurations in one-dimensional
I

d i f f usion on a lattice represented by shaded circles . O’,en

circles indicate clusters. Surface sites in adjacen t channels

I are throughout assumed to be exactl y abreast of each other.

Spacing in close-packed direction is 2.

I Fig. 2. Rate constants for interconversion of diner configurations on a

I 
one-dimensional lattice . Configurations are labelled by the

separation between atoms , in units of 2, along the direction of

I diffusion .

Fi g. 3. Configurations allowed on the points x of the center of mass lattice

I of a dimer. Arrows indicate the jumps and jump rates between

configurations on neighboring sites.

I Fig. 4. Schematic of potential energy relations for a dissociating diner .

I 
Shading indicates separation at which interact ions  between

adatoms in cluster vanish. AE* denotes diffusion barrier for a

t single atom.

Fig. 5. Mean-square displacement of dissociating diners, modeled on the

behavior of Re on W(2l1).3 Parameters entering estimates are

— 2 .2  x io 12 
exp(-17,500IRT), B 1 — 2.5 x io

12 
exp(-l8,300/RT),

— 2.95 x 1012 exp (-l9,800/RT), P5 — 10.5 exp(-E2/RT),

— exp(—E
2/RT), 

a~ — 2.95 X 1012 exp[-~’19,8oo + CE2)/RTJ .

All estimates at T — 330°K. Different degrees of dissociation

n are obtained by varying E2 between 0 and 5000 cal/mole.

I-,

- I

H~ 
I
I

______ 

___________________ - 
- - -



37

Fig. 6. Configurations and rate constants for trirner d i f f u s i o n .

Energetically different configurations on the same site x are

I 
distinguished by A and B.

I Fig. 7. Probability density for the total number of jumps N made b’ a
- 

d imer during the interval t. All estimates in this and subsequent

figures are made for the same effective jump rate A — 2abf(a+b),

for diners originating in even positions .

Fig. 8. Probability density for the number of jumps , averaged over adjacent

I values of N .

Fig. 9. Probability density for the time Tk at which the k
th 

jump of the

I diner occurs. -

Fig. 10. Probability density for the displacement x of the center of

1 mass for a dimer. Continuous curve shows probability density

• I for Gaussian walk with same effective jump rate.

Fig .  11. Probabil i ty density for x, averaged over adjacen t values of x.

Density for Gaussian walk is indicated by continuous curve.
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behavior of Re on W(211).,3 Parameters entering estimates are
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exp(-18,300/RT) ,
— 2.95 x i&2 exp(-19 ,800/RT), P — 10.5 exp(-B /RT),
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2.95 x 10 exp[-(19,800 + cE2)/RT].
All estimates at T — 330 K. Different degrees of dissociation

/ 

$ are obtained by varying E
2 betweeno  and 5000 cal/mole. 

____



1.-

; 
I

X =  0 1 2 3

1 ÷  + + +-I-

r 01 .
~~
. b1~~~.. c1

¶ ~~
— c1 ~~

— b1 O~
.

5, 4 4 4

b~ c~

\ / b fl

/\/\ /\/\ /\/\0m /\~~ bm /\ Cm /\

= 

/ 
Cm 

/ B
¶ AP-?97

Fig. 6. Configurations and rate constants for trimer diffusion.I Energetically different conf igurations on the same site ccI distinguished by A and B.

~

,

1

111

-  I T  ~ 
— .5- - -. - . -~~ - -



- - - —~~- - ________ - 

0.1~ . -

/ z 6.0 er
o : 1.33 sec 1
b :1.34 sec 1 -

0.10 - -

0 0 o

I 
- 1J~flIfl~0.05 - -

-_- 
_____________I -

0 :2 .00
b : l 0 0

I 
010 - 

~ 1~ r~I PN (t )

I 005 - L~iHUUnHJ
i

~~~~~Au~~uuu~~u~un0 -~ n__I.
0.15 I I I I I I I f I~~~I - —r

- b:2.00

0.10

PN (t)

0.05 —

1 
0
0 5 10 15 20 25 30

-; Number of Jumps ,N

~ Fig. 7. Probability density for the total number of jumps N made by a
d imer during the interval t. All estimates in this and subsequent
figures are made for the same effec tive jump rate A — 2ab/(a+b), forL d imers originating in even positions.

______ ~~~~~~ ~~~~~~~~ :~~~~~ ‘ ~
I.



I

I 

EPNw + PN+pfl/2 

S

I
-J 

(I)

CD
I
I 

_ _O ~~~~~~~~~~~~~~~~~~~~~~~~~~ ___________

~~1¶ 
1

—, r .. .> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

0~~~_.
~4, 

(•J1 
~~~~~~~~~~~~ ...-&r\ - - \.S-r~- r \ \-..5.-rK~~~~\\-r- _~- . X \\\.t\\~5-\ .,r -  - -

C-
— C ~~~~ - ~r,rI\\\ttt\\\. *.~ .tr.r’~ t -~ -.~-S~~ -. 

-0 —

- f -
H z 

_ _ _ _ _ _ _ _

-~~~~
.,-—

_____________  II ~ I- I

I 1 1 1 1 1 !  i i i

Fig. 8. Probability density for the number of jumps , averaged over adjacent
values of N.

______ ~-~-~- ~~~ -~~in — -
~~:N Ms — -



I
I 1 )

o Z 2  I

0.8 ,~~~. — b~ 1 sec ’

~13 (

05 1.0 1.5 20 25 3.0
Ti me , t (seconds )

I Of I

o~~1/3sec
0.1. b~ 1/O sec ’

~~~
1’

. 
~~~~~~

0.4 - I I !
I I Ir f1~ 1/’ \\

03 //
,

T 0.2 - \\~. a~ 1
- - ‘I c - 2  \ “ -~~2/ 1 \ - .5

’

fl 0] ,/ \ ‘.
1 1  •5. 5

’ii 5’.- 
5 .5
*..-a, .5.5- ~~~of  - _ _ _ _ _ _ _ _

— 2 4 5
- T-me , • ( - ~- - n i - ~)

0-~

C r 2  o’1.33 sec 1

fT11
( t )  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

10
Ti me ,t (seconds)

/ 

Fig . 9. Probability density for the time at which the k
th jump o~ i .

diner occurs.

_ _ _ _ _  - 
&~_~~~ _

_ .
~v~ - -  - - 

- 

-



‘6Csec
o 1.33 ,r-c ’

I b r  134  sec -1

o.
1obr~~~ 

-

Goussian0.05
~~I

0.15 - I I I

0 =2 . 00  -

fl ~ = 1.oo

0.10 
/ 

-

/ -

Pr

a =1 .00
b =200

0.10

p

0.05 H

0 ~~ 1~~~~0 50 b 1  150

Fig, 10. Probability density for the d isp lacement x of the center of mass

~~~~ Distance , x .5

for a d imer . Continuous curve shows probability density for
Gaussian walk with same effective jum p rate .

- - - - -- ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - -~~ --



I
I
I 

—

I
I
I
I 

- S 
a b (sec ’)

01 .. — 1 2
I 

- 

- ‘ - 1.33 1.34

E J  2 1
F c\J

0.05F-

I.

0 o ~51 
10

Distance , x

Fig. 11 . Probability density for x, averaged over adjacent values of x.Density for Caussi~n walk is ind icated by continuous curve .

~fl

“ A  ~.I’ 
_ 

_ _
_____________  

- - - - — -  -: 
~~~~~~~~~~~~~~ 

- 
~~~~~~~ - - ~~~~~ - ~~ _~~

_ _
~~

_
~~~~~~ - - —t__

~~~~~~~~~~
_
~ 

_ .- _ _
~~~ -

.
~~•;!~~ _. =- - - - 

— --- --- - -


